Course Code	Credit Hours
CEM-300	3-0

Course Description

This course revolves around the concept, mechanism, operationalization and management of procurement. It shall enable the UG engineering students to understand the technical, ethical, legal, financial and sustainability concerns of procurement and its management. The course shall educate the students in the areas of procurement processes, policies and regimes, and their contractual and legal infrastructures, strategic and operational considerations, and technical and financial matters

Text Book:

Reference Book:

- 1 Lysons, K., & Farrington, B. (2016). Procurement and Supply Chain Management (9th Edition). Pearson Higher Ed.
- 2. Barry Crocker, D., Jessop, David Farmer, David J. V. Jones, & Peter J. H. Baily (2015). Procurement, Principles & Management (11th Edition). Pearson.
- 1. Sollish, F., & Semanik, J. (2012). The procurement and Supply manager's Desk Reference, 2nd Edition. John Wiley & Sons.
- 2. Dominick, C., & Lunney, S. R. (2012). The Procurement Game Plan: Winning Strategies and Techniques for Supply Management Professionals. J. Ross Publishing.
- 3. PPRA Rules (2004, 2011), Regulations (2010, 2011) and Guidelines (2009).

Prerequisites :

Nil.

	Without Project	With Project/Complex
	(%)	Engineering Problems (%)
Quizzes	15	10-15
Assignments	10	5-10
Mid Terms	25	25

ASSESSMENT SYSTEM FOR THEORY

Project	-	5-10
End Semester Exam	50	45-50

ASSESSMENT SYSTEM FOR LAB

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%
Final Assesment/ Viva	20%

Teaching Plan

Week No	Topics/Learning Outcomes	
1	Introduction to procurement and its life cycle	
2	Supply chain and the role of procurement	
3	Procurement management process	
4	National Public Procurement Regulatory Authorities (PPRAs),	
	requirements, rules and procedures, and procurement commissions	
5	International procurement arrangements and guidelines	
6	Procurement planning and budgeting	
7	Tendering and bidding process	
8	Contract management and administration	
9	Grievance/dispute resolution	
10	Administrative reviews and audits	
11	Procurement ethics and sustainability	
12	Latest trends in procurement and use of technologies	
13	Local and international case studies	

Practical: Nil.

Artificial Intelligence in The Built Environment

ſ	Course Code	Credit Hours
	CE-451	3-0

Course Description

This course will introduce students to fundamental concepts of coding, computing, machine learning, and artificial intelligence, thus providing them with modern research tools necessary to develop state-of-the-art industrial and academic output

Text Book:

- S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall,2nd Edition
- The History of Artificial Intelligence Author Chris Smith, Brian McGuire, Ting Huang,
- 3. Tarabishy, S., Kosicki, M., & Tsigkari, M. (2021). Artificial Intelligence for the Built Environment. Springer International Publishing.

Reference Book:

Prerequisites :

Nil.

ASSESSMENT SYSTEM FOR THEORY

	Without Project (%)	With Project/Complex Engineering Problems (%)
Quizzes	15	10-15
Assignments	10	5-10
Mid Terms	25	25
Project	-	5-10
End Semester Exam	50	45-50

ASSESSMENT SYSTEM FOR LAB

Lab Work/ Psychomotor Assessment/ Lab Reports	70%
Lab Project/ Open Ended Lab Report/ Assignment/ Quiz	10%
Final Assesment/ Viva	20%

Teaching Plan

Week No	Topics/Learning Outcomes
1	Introduction to AI and Machine Learning
	Overview of AI techniques
	AI-based applications in Building Information Modeling
	Overview of AI in built environment
2	PEAS Concept, Inputs, Outputs, Processes,

	AI agents, Agent function and agent program,
	Agent and Environment Types
3	Exploration of Datasets and their Analysis
0	Data collection and analysis techniques,
Λ	Data-driven decision-making algorithms
4	Frequent pattern Mining,
	Search algorithms,
-	Initial and goal states
5	Supervised vs Unsupervised Machine Learning Techniques
-	Exploration of Supervised Learning Techniques
6	Regression Analysis
	Linear regression
	Logistic Regression
7	Clustering,
	Bayes Classification,
	KNN Classification
8	Basics of Python Programming
	Introduction to Anaconda IDE
9	MSE
10	Overview of Artificial neural network (ANN) models,
	Usage of ANNs in different applications
11	Building Information Modelling
	Modelling in Revit
12	Modelling in Revit (Contd.)
	Basics of Python Programming in BIM
13	Weka's exploration and its usage
14	Case Studies
	Intelligent transportation system
	Soil Mechanics
15	Case Studies
	Intelligent scheduling,
	resource allocation, and risk management
16	Case Studies
	Use of AI in Structural Design
	Open AI construction
17	Project/ Major Assignment Demos and Vivas
18	ESE

Practical: Nil